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Overview

@ Extend white-box attacks to limited access settings.
— Z0O0: Uses the finite difference method to
estimate the gradients for optimization from the
output scores. (black-box)

— EAD: Incorporates L; minimization to encourage
sparsity in the perturbation, hence generating more
transferable adversarial examples. (no-box)

@ Demonstrate that these attacks can succeed
against recently proposed state-of-the-art
defenses. .
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Background
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Adversarial Examples
Goodfellow et. al., ICLR 2015
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Attack Settings

Backpropagation computes the gradient of the error
function with respect to the neural network weights

Back

Attack setting Deep neural network (DNN) .
propagation
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Optimization-based Attack

Input image: x, € R?, adversarial image: x € R?, target
class label: ¢t. Define an optimization problem:

minimizey ||x — xo||> + ¢ - f(x,t) (1)
subject to x € [0, 1],

@ ||x — xo||5 measures the L, distortion

@ f(x,t)is some loss to measure how successful the
attack is (smaller is better). How to design it?

@ cis a cost constant to trade-off between the two
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Carlini & Wagner’s (C&W, 2017) Attack

Carlini & Wagner propose to use the following loss:
f(x,t) = max{max|Z(x)}; — [Z(x)}s, 0}, (2)

Z(x) € R" is the logit layer outputs (unnormalized

probabilities), and the prediction probabilities F'(x) are:
Fx)y = S22
o = S (2601

@ Strongest Attack

@ Only works in the white-box case

Viell,...,K}. (3)
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Black Box: ZOO

Joint work with Pin-Yu Chen (IBM Research), Huan
Zhang (UC Davis), Jinfeng Yi (IBM Research), and
Cho-Jui Hsieh (UC Davis)
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Black Box Attack

Black-box: No access to model parameters;
Can observe model output (prediction probabilities)

Previous Approach

@ Transferability based attack using learned
substitute model (Papernot et al, 2017)
= Success rate lower than C&W (model mismatch)
= Computational cost (substitute model training)

9/50



Thesis 2018
Our Black-box Attack Formulation

Input image: x,, adversarial image: x, target class
label: t. Define the following optimization problem:

minimizey ||x — xo||5 + ¢ - f(x,1) (4)
subject to x € [0, 1],

We propose to use the following loss function:

f(x,t) = max{maxlog|F(x)]; — log[ F(x)}1, 0}, (5)

where F(x) € R" is the blackbox output (probabilities)
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Zeroth Order Optimization (ZOQO)

Access to f(x) only, no V f(x) available.
Estimate gradient g, for each pixel using the symmetric
difference quotient:

o Of(x) _ f(x+he;)) — f(x — he;)

gi = aXZ’ ~ 2h ) (6)

Then we update each pixel (coordinate) based on its
estimated gradient (we use ADAM optimizer).
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Challenges of ZOO

Number of Queries = O(2 - number of pixels)
For an ImageNet image with resolution 299 x 299 x 3, we need
536,406 queries to estimate the gradients of all pixels once.

How to reduce the number of queries?
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Black-box attack by Coordinate Descent

x € R? is the input image with p pixels, f is the loss

function we defined to find adversarial examples
Algorithm 1 Stochastic Coordinate Descent

1: While not converged do
2. Randomly pick a coordinate i € {1,...,p}
3. Compute an update ¢* by approximately minimizing

argmin f(x + de;)
0
4:  Update x; «+ x; +6*
5. end while

In practice we optimize a batch of B = 128 coordinates
for better efficiencv 13/50
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ZOO-ADAM

Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordi-
nate Descent with Coordinate-wise ADAM

Require: Step size , ADAM states M € R, v € RV, T € 77,
ADAM hyper-parameters 3, = 0.9, £, = 0.999, € = 107°
1: M<+—0,v0T+0
2: while not converged do

3. Randomly pick a coordinate i € {1,--- ,p}
4. Estimate g; using (6)
5: T, «T,+1
6: Mi — BiMi+ (1= B)gi,  vi < Povi+ (1 — 52)?]3
7o M= M/(1= B0, O =uv/1-05)
Y M;
i’ - 77\/@—1_ + €
9: Update x; + x; + 0"
10: end while
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Attack-space Dimension Reduction

@ Attack-space is the image space that we search for
adversarial noise.

@ Instead of searching in the original image’s space,
we can search in a smaller space (with less pixels)
using dimension reduction techniques.

@ This greatly reduces the number of pixels to
optimize and make the attack practical for large
images.
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Attack-space Dimension Reduction

For images, size scaling is easy and fast. We craft
noise at small size and then upscale it to the input
image size. Input image is untouched.

grand piano  black-box attack  Dutch oven

ﬂ + . _ ”
3 | 299299 ’

Bilinear|ntefpolation
H 5232

Small Attack-space

But what if 32 x 32 is not big enough?

16/50



11556 20k
Hierarchical Attack (on bagel)

Gradually increase the dimension of attack space after
some iterations.
32 X 32 — 64 x 64 — 128 x 128

32x32 oz 64 x 64 oz 128 x 128

T A
e T
LY

y pixel coordinate
y pixel coordinate
y pixel coordinate

bagel Hierarchical attack
Most changed pixels are around the center of bagel?
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Importance Sampling (on bagel)

Importance determined by the magnitude of changes in
a certain region (we use maxpooling).
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Targeted Attack on MNIST
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Figure: Row: crafted adversarial examples from original examples
n (a). Column: targeted attack class (‘0’ to ‘9’).
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Targeted Attack on CIFAR-10
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Figure: Row: crafted adversarial examples from original examples

in (a). Column: targeted attack class.
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Attack on MNIST & CIFAR-10

Success rate close to white-box (C & W) attack - nearly
100%. Similar L, distortion and reasonable attack time.

MNIST
Untargeted Targeted
Success Rate | Avg. L, | Avg. Time (per attack) | Success Rate | Avg. L, | Avg. Time (per attack)
White-box (C&W) 100 % 1.48066 0.48 min 100 % 2.00661 0.53 min
Substitute Model + FGSM 40.6 % - 0.002 sec (+ 6.16 min) 7.48 % - 0.002 sec (+ 6.16 min)
Substitute Model + C&W 33.3% 36111 | 0.76 min (+ 6.16 min) 26.74 % 5272 | 0.80 min (+ 6.16 min)
ZOO-ADAM 100 % 1.49550 1.38 min 98.9 % 1.987068 1.62 min
CIFAR-10
Untargeted Targeted
Success Rate | Avg. L, | Avg. Time (per attack) | Success Rate | Avg. L, | Avg. Time (per attack)
White-box (C&W) 100 % 0.17980 0.20 min 100 % 0.37974 0.16 min
Substitute Model + FGSM 76.1 % - 0.005 sec (+ 7.81 min) 11.48 % - 0.005 sec (+ 7.81 min)
Substitute Model + C&W 25.3 % 2.9708 0.47 min (+ 7.81 min) 5.3% 5.7439 0.49 min (+ 7.81 min)
ZOO-ADAM 100 % 0.19973 3.43 min 96.8 % 0.39879 3.95 min
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Untargeted Attack on Inception-v3

@ black-box attacks to 150 ImageNet test images
(size 299 x 299 x 3)

@ 2,000 iterations (within 20 minutes) for each attack

@ reduced attack-space: 32 x 32 x 3

@ No hierarchical attack or importance sampling

Success Rate | Avg. L,
White-box (C&W) 100 % 0.37310
Black-box (ZOO-ADAM) 88.9 % 1.19916
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Untargeted Attack on Inception-v3

grand piano  black-box attack Dutch oven ptarmigan black-box attack black grouse
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Figure: ImageNet untargeted attack examples
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Targeted Attack on Inception-v3

Targeted attack is much harder than untargeted attack,
because we want to force the image to be misclassified
to specifically one class out of 1,000.

Before Attack: P(bagel) = 0.97, P(piano) = 0.000006
After Attack: P(bagel) = 0.006, P(piano) = 0.0061
L, distortion: 3.425

—
f:
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Targeted Attack on Inception-v3

Needs 20,000 iterations to perform this hard targeted
attack (about 4 hours). Attack-space dimension
reduction, hierarchical attack and importance sampling
techniques applied.

black-box attack grand piano
2 *_.-n! &

+

/50



The Cooper Union Thesis 2018
Targeted Attack on Inception-v3
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Figure: Left: the total loss ||x — xg||% + ¢ - f(x,t) versus iterations.
Right: ¢ - f(x,t) versus iterations in log scale. When ¢ - f(x,t)

reaches 0, a valid attack is found. e
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Targeted Attack on Inception-v3

40 images from ImageNet test set, random target:
@ 30.0% success within 2,000 iterations
@ 72.5% success within 5,000 iterations
@ 82.5% success rate within 10,000 iterations
@ 95.0% success rate within 20,000 iterations
@ Average L, distortion: 2.108
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Conclusions

@ Zeroth Order Optimization (ZOO) based black-box
attacks to deep neural networks can be applied to
large images by using the proposed attack-space
dimension reduction, hierarchical attack and
importance sampling techniques.

© ZOO can achieve a success rate similar to
white-box attacks, without relying on transferability
or training an extra substitute model.
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No Box: EAD

Joint work with Pin-Yu Chen (IBM Research), Huan
Zhang (UC Davis), Jinfeng Yi (IBM Research), and
Cho-Jui Hsieh (UC Davis)
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Carlini & Wagner’s (C&W, 2017) Attack

Targeted attack formulation:
minimize, ||x — xo||5 +c- f(x,1) (7)
subject to x € [0, 1],

C&W loss function:

fix,1) = max{max|Z(x)}; — [Z(x)ls, =k}, (8)
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Elastic-net Optimization

@ Elastic-net: min, f(z) + \i||z|: + Xo||z|/5
= Group feature selection for high-dimensional
machine learning problems

@ C&W: min, ||x — xq||3+c- f(x,1)

= Elastic-net: \; =0, A\, = !

o Why L,? ‘
=- Convex regularizer that encourages sparsity in
the perturbation

@ Goal: Craft robust adversarial examples by limiting
unnecessary noise in the perturbation
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EAD Algorithm

Formulation:
minimizey ¢- f(x,t) + [|[x — xo||3 + B||x — x0li  (9)
subject to x € |0, 1]*

Solution: lterative Soft Thresholding Algorithm (ISTA)

min{z;, — 3,1}, if z; — xq; > 5;
1S5(2)]i = ¢ Xo;, if |z; — x0;| < B; (10)
max{z; + 5,0}, ifz; —xg; < =0,
Interpretation: General and Robust
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EAD-ISTA

Algorithm 3 Elastic-Net Attacks to DNNs (EAD)

. Input: original labeled image (xo, ty), target attack class

t, attack transferability parameter «, L, regularization pa-
rameter (3, step size «y, # of iterations 1

Output: adversarial example x

Let g(x) = c- f(z, 1) + [Ix — xo|13

Initialization: x¥ = y(© = x,

fork:—OtoI—ldo

xF = 5y ™) — OgCVg(y““)))
(k+1) _ (k+1) v kL) (R)
y X + A 3(X x")
end for

Decision rule: determine x from successful examples in
{x"}I_ (EN rule or L, rule).

Thesis 2018

33/50



The Cooper Union Thesis 2018

Adversarial Examples
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Figure: MNIST, CIFAR-10, ImageNet
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Performance (Targeted)

EAD attains 100% ASR and the least L, distorted
adversarial examples.

MNIST CIFAR10 ImageNet \
Attack method | ASR L, L, L ASR L, Lo Lo ASR L, Ly Lo
C&W (L») 100 22.46 1.972 0.514 /100 13.62 0.392 0.044 /100 232.2 0.705 0.03
FGM-L, 39 535 4186 0.782|48.8 51.97 1.48 0.152|1 61 0.187 0.007
FGM-L, 34.6 39.15 3.284 0.747|42.8 39.5 1.157 0.136 |1 2338 6.823 0.25
FGM-L, 425 1272 6.09 0.296|52.3 127.81 2.373 0.047 |3 3655 7.102 0.014
I-FGM-L; 100 32.94 2.606 0.591 /100 17.53 0.502 0.055|77 526.4 1.609 0.054
I-FGM- L, 100 30.32 241 0.561|100 17.12 0.489 0.054|100 774.1 2.358 0.086
I-FGM- L, 100 71.39 3.472 0.227 100 33.3 0.68 0.018 100 864.2 2.079 0.01
EAD (ENrule) |[100 17.4 2.001 0.594 100 8.18 0.502 0.097 (100 69.47 1.563 0.238
EAD (L, rule) {100 14.11 2.211 0.768|100 6.066 0.613 0.17 |100 40.9 1.598 0.293
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Adversarial Training (MNIST)

Thesis 2018

Incorporating L, examples complements adversarial
training and enhances attack difficulty in terms of

distortion.

Attack  Adversarial Average case
method training ASR L, Lo L
None 100 22.46 1.972 0.514
c&w EAD 100 26.11 2.468 0.643
(Lo) C&W 100 24.97 2.47 0.684
EAD + C&W | 100 27.32 2.513 0.653
None 100 14.11 2.211 0.768
EAD EAD 100 17.04 2.653 0.86
(Ly rule) C&W 100 15.49 2.628 0.892
EAD + C&W | 100 16.83 2.66 0.87

36/50



The Cooper Union

Attack Transferability (MNIST)

Thesis 2018

Transfer Attack from undefended network to defensively

distilled network

Attack success rate (%)
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Results Against Defenses

Joint work with Pin-Yu Chen (IBM Research)
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Ensemble Adversarial Training (ZOO)

@ Augment training data with with perturbations
transferred from other models.
— State-of-the-art ImageNet defense
— Top-performing model in NIPS 2017 competition
@ Perform non-targeted attack with ZOO on defended
Inception-v3 and Inception ResNet-v2
— Achieve 100% success rate on 10 random
samples against both models
— Visually imperceptible perturbations
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Madry Defense Model (EAD)

@ A high capacity network trained against PGD,
iterative FGSM with random starts.
— State-of-the-art MNIST defense

@ Competition: Provided undefended models of the
same architecture.
— Transfer to hidden defended model
— Used EAD (EN Rule) with ensemble of 3
models.
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EAD yields near 100% ASR in both the targeted and

non-targeted cases.

Targeted Non-Targeted
Attack Method Confidence |ASR L, Ly Lo ASR L, Lo Lo
PGD None 68.5 188.3 8.947 0.6 [99.9 270.5 13.27 0.8
I-FGM None 75.1 1445 7.406 0.915/99.8 199.4 10.66 0.9
10 1.1 3415 2482 0.548|4.9 23.23 1.702 0.424
Caw 30 69.4 68.14 4.864 0.871|71.3 51.04 3.698 0.756
50 92.9 117.45 8.041 0.987 |99.1 78.65 5.598 0.937
70 34.8 169.7 10.88 0.994 |99 119.4 8.097 0.99
10 274 25.79 3.209 0.876|39.9 19.19 2.636 0.8
EAD 30 85.8 49.64 5.179 0.995|94.5 34.28 4.192 0.971
50 98.5 9346 7.711 1 99.6 57.68 5.839 0.999
70 67.2 1489 10.36 1 99.8 90.84 7.719 1
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Adversarial Examples (Non-Targeted)

Performing elastic-net minimization aids in minimizing
visual distortion, even when the L, distortion is large.

~ ANBEAOEERER
- ANBRAEERER
- AHGEREERY B

Figure: Visual illustration of adversarial examples crafted in the
non-targeted case by EAD and PGD with similar average L.
distortion (0.8).
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Feature Squeezing (EAD)

@ Relies on applying input transformations to reduce
the degrees of freedom available to an adversary.
— Reduce the color bit-depth of images.

— Using smoothing (both local and non-local).

@ Detection: the model’s original and squeezed
predictions are compared using the L, norm.

— Multiple feature squeezers are combined by
outputting the maximum distance.

— Threshold chosen which is exceeded by no
more than 5% of legitimate samples.
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Results (MNIST)

EAD yields near 100% ASR in both the targeted and
non-targeted cases.

Thesis 2018

Non-Targeted Targeted
Next LL
Attack Method Confidence |ASR L, Lo Lo ASR I, Lo Lo ASR I, L, Lo
I-FGSM None 100% 196.0 10.17 0.900|78% 169.8 8.225 0.881|67% 188.1 9.091 0.991
10 0% 21.05 1.962 0.568 0%  31.94 2.748 0.655|0%  37.78 3.207 0.732
caw 20 15% 27,21 2.472 0.665|10% 40.51 3.419 0.763|24% 47.86 3.977 0.820
30 64% 34.30 3.019 0.754 |67% 47.43 3.973 0.842|91% 59.56 4.811 0.888
40 87% 42.04 3.590 0.831|97% 61.12 4.938 0.922|100% 72.88 5.715 0.939
10 24% 11.44 2.286 0.879|7%  19.69 3.114 0.942 7%  23.99 3.481 0.955
EAD 20 80% 15.26 2.766 0.921|65% 26.80 3.752 0.964 |78% 31.81 4.122 0.972
30 95% 20.17 3.264 0.957|97% 35.50 4.449 0.983|93% 39.68 4.769 0.991
40 97% 26.50 3.803 0.972|100% 44.75 5.114 0.992|100% 50.21 5.532 0.997
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Results (CIFAR-10)

EAD yields near 100% ASR in both the targeted and
non-targeted cases.

Thesis 2018

Non-Targeted Targeted
Next LL
Attack Method Confidence |ASR L, Lo Ly ASR I, Lo Lo ASR I, Lo Ly
I-FGSM None 100% 81.18 1.833 0.070|100% 212.0 4.979 0.299|100% 214.9 5.042 0.300
10 32% 10.51 0.274 0.033|0% 14.25 0.368 0.042 0% 17.36 0.445 0.049
Caw 30 78% 28.80 0.712 0.073|51% 37.11 0.901 0.083|6%  41.51 1.006 0.093
50 96% 59.32 1.416 0.130|98% 82.54 1.954 0.169|94% 90.17 2.129 0.179
70 100% 120.2 2.827 0.243|100% 201.2 4.713 0.375|100% 212.2 4.962 0.403
10 46% 6.371 0.379 0.079|10% 8.187 0.508 0.109|0%  10.17 0.597 0.121
EAD 30 78% 18.94 0.876 0.146|51% 25.98 1.090 0.166|23% 29.58 1.209 0.175
50 94% 42.36 1.550 0.206 |96% 62.90 2.094 0.247 |90% 70.23 2.296 0.275
70 100% 83.14 2.670 0.317|100% 157.9 4.466 0.477|100% 172.8 4.811 0.502
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Adversarial Examples (Non-Targeted)
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Figure: First row: Original,
Subsequent rows:

r = {10, 20, 30}.
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Figure: First row: Original,
Subsequent rows:
r = {10, 30, 50}.
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Conclusion
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Summary

@ Validated effectiveness of ZOO as the
state-of-the-art black-box attack.

@ Validated effectiveness of EAD as the
state-of-the-art no-box attack.

@ Demonstrated attacks can succeed against
state-of-the-art defenses.
— Ensemble Adversarial Training: ZOO
— Madry Defense Model: EAD
— Feature Squeezing: EAD
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Future Work

@ Explore gradient-free optimization strategies, like
Genetic Algorithms.
— Estimating the gradient is costly (ZOO)

@ Extend black-box attack to real-world partial
information settings.
— Top-N classes outputted

@ Extend algorithms to other domains.
— Text + Speech
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Thank you!
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