
1

Lane Keeping and Navigation Assist System
Yash Sharma, The Cooper Union
Vishnu Kaimal, The Cooper Union

Abstract—We built a miniature autonomous vehicle which can navigate through maps consisting of various road topologies. Our
system is comprised of a perception module, for detecting lanes and intersections, and a control module, for lane keeping and turn
making. A map was constructed for validation, and we verify that our vehicle can navigate while keeping within the lane lines.

Index Terms—Self-Driving Cars, Lane Keeping, Navigation, Perception, Control, Street Map

F

1 INTRODUCTION

THE possibility of self-driving cars has fascinated us for
decades now, but only recently have they appeared to

be an impending reality. By 2007, with the final DARPA Ur-
ban Challenge finishing in a success, the seeds were planted
for research in this field, and now the first commercial self-
driving cars appear to be close to market. Google, Tesla,
Uber, and other large players in this space, already have self-
driving vehicles navigating through neighborhoods. At this
point, the tasks remaining for such companies are building
self-driving vehicles with inexpensive equipment such that
they can be viable commercial products, and convincing the
market of the safety of such systems, as one malfunction
could result in death.

Despite the progress that has been made in the field, little
public research is available, as most researchers working on
this topic are in industry, aiming to beat their competitors
in bringing an autonomous vehicle to the market. This
makes the project of building a self-driving car one ripe
with exploration. Therefore, we have decided to test in a
controlled environment, so real-world complexity can be
added for experimentation and not ever-present, making the
project inviable.

We ventured out to see if we could build a lane keeping
and navigation assist system which could enable vehicles to
navigate a model of a real-world street map. After building
our vehicle, we first implemented the lane keeping system
and validated its performance on a set of lanes with varying
curvature. We then concatenated the lane configurations
into a map for navigation, and enabled the vehicle to handle
intersections.

The rest of this paper is organized as follows: Section 2
describes our experimental setup, namely our vehicle, lane
configurations, and map design. Section 3 describes our
approach, our implementation of a lane keeping and nav-
igation assist system. Section 4 describes our experimental
results, both qualitative and quantitative. Finally, Section 5
concludes the paper.

2 EXPERIMENTAL SETUP

2.1 Vehicle
In order to test a lane keeping and navigation assist system,
a vehicle is needed. A prototype we used for testing can be
seen in Figure 1.

Fig. 1. Our vehicle prototype, with hardware components labeled

The vehicle was designed in Solidworks, and subse-
quently 3D printed in parts. As specified in the figure, the
components include an Arduino Uno for motor control, a
Raspberry Pi 3 for on-board processing, an L298D motor
driver, a front-facing Pi Camera module, and motors to
move the wheels. Separate battery packs are provided for
the Arduino, Pi, and the motor driver. Holes were placed
appropriately to screw the Pi into the chassis. Additionally,
the axles are connected to the body via trusses. Finally, the
Pi Camera is stood up using a simple cardboard stand. As
can be seen, the body of the vehicle has 3 side panels to
make sure the sensitive parts are safe.

The vehicle was designed so it would be 2WD. The
vehicle is run off the back two wheels, the back axle is
propelled by the motor. making the driving system “rear-
wheel drive”. Rear-wheel drive was chosen as its balance
and acceleration advantages are crucial to keeping to curved
lanes. The steering mechanism is implemented with differ-
ential steering, distributing different levels of power to each
wheel in order to steer.

2.2 Lane Configurations
We designed our lanes as follows: For left curved lanes
of angle θ, we draw a straight line from the bottom-left
vertex to the right edge so the angle between the line at
the bottom edge is θ. For right curved lanes of angle θ, we
draw a straight line from the bottom-right vertex to the left
edge so the angle between the line at the bottom edge is
θ. We then fit the two vertices with a curve. We found the
minimal realistic θ for lane keeping to be 40°, and thus we
constructed left and right lanes at 60°, 50°, and 40°.



2

Fig. 2. An example of a curved lane used for testing

For our initial lane keeping tests, we taped the config-
ured lanes to posterboard, as seen in Figure 2.

2.3 Navigation Map

Fig. 3. Representation of our map design

Figure 3 details a labeled diagram of our navigation
map. The map’s size is 20 feet by 10 feet (width x height).
The curves were fit with 60% bezier curves, where a 100%
curve corresponds to a 90° (right) angle, and a 0% curve
corresponds to a diagonal line. As can be seen, the map is
composed of all of our tested lane configurations.

3 APPROACH

The goal of our project is to build a system which can enable
a vehicle to navigate a model of a real-world street map. The
basis for such a system is lane keeping, the ability to keep
within a lane. However, real-world street maps are more
than many lanes concatenated together, they incorporate
intersections, which is what a navigation system handles.
We will describe the lane keeping and navigation systems,
as well as the software architecture in this section.

3.1 Lane Keeping

Fig. 4. System Diagram

A simplistic diagram of our proposed system can be seen
in Figure 4. An input image will be fed to our perception

module, which will output the cross-track error. The cross-
track error will then be fed to the control module which will
output motor commands that actuate the vehicle’s motors,
change it’s state, and yield a new input image for the system
to operate upon. As discussed, the goal of the system is
to perform lane keeping qualitatively, and quantitatively
minimize the average cross-track error throughout the time
horizon.

In our system diagram, the input image is represented
by an image from a front-facing camera. This is because
in our system, a single front-facing camera is our only
sensor modality. In addition, the output of our perception
module which serves as input to the control module is solely
the cross-track error. This is because we are using a PID
Controller for actuating our motors.

3.1.1 Perception

Fig. 5. Canny edge detection

In order to detect edges in the images, we applied Canny
edge detection, due to its robustness. An example of its
application to a sample image is shown in Figure 5. Clearly,
it works very well at detecting edges, and hence it’s a part
of our pipeline. We then applied a perspective transform to
gain a birds-eye view of the lanes. Depending on the size of
the source quadrangle specified, a birds-eye view of a larger
segment of the lanes is seen. This is important for avoiding
latency problems by providing a look-ahead to the control
algorithm.

To detect lane lines, we compute a histogram on the bot-
tom of the image, with the peaks on the left and right halves
giving us a good estimate of where the lane lines start. We
then search small windows starting from the bottom and
essentially follow the lane lines all the way to the top until
all pixels in each line are identified. Finally, a polynomial
curve is applied to the identified pixels, yielding the lane
lines. As the vehicle moves, the search continues online.
The histogram is recomputed after intersections. The sliding
window size was tuned to be the minimal size needed to still
detect the lane of maximal curvature.

In order to handle cases where the vehicle is at an angle
and thus in the original image one or both of the lanes start
at the left or right edges, if less than two peaks are found
when computing the histogram on the bottom edge, the left
and right edges are then searched for starting points.

Finally, with the lane lines detected, the cross-track error
(CTE) needs to be computed to serve as input to the control
algorithm. With the birds-eye view, finding the CTE is
simple. As the camera is centered on the vehicle, the middle
of the image is the car position, and the midpoint between



3

the detected lanes is the center point. If only a single lane is
seen, the midpoint is taken between the detected lane and
the opposite edge. The difference between the midpoint and
the car position is the cross-track error. As discussed, one
can define the lookahead based upon how far ahead the
cross-track error is found. We find the cross-track error at the
topmost point of the perspective transform output, therefore
we can vary the lookahead by expanding or downsizing the
source quadrangle we take the perspective transform over.

Fig. 6. Perspective Transform & Detected Lane Lines and CTE

An example of the perspective transform output and our
final results, with the detected lane lines and CTE estimated,
is shown in Figure 6. The yellow line in the final image
is our attempt at fitting a polynomial line to serve as the
center trajectory, in order to smooth CTE transitions. As
you can see, the polynomial fit fails when only one lane
is seen, therefore in our final system, we solely applied a
large lookahead to stabilize the system.

3.1.2 Control
As discussed, the algorithm we are using for our control
module is a PID controller operating on the CTE. The full
mathematical form of the PID controller is defined as being
u(t) = Kpe(t) +Ki

∫ t

ti
e(τ)dτ +Kd

de(t)
dt where each of the

additive terms are respectively the proportional, integral,
and derivative terms, e(t) is the error (CTE), and u(t) rep-
resents the output control variable that should be adjusted.
The proportional, integral, and derivative terms of the PID
controller are used to adjust the output control variable by
an amount proportional to the error, sum of past errors, and
the rate of change of the error over time, respectively. The
weights for each of these terms need to be tuned in order to
optimize performance.

We were able to easily lane keep to a straight line
by simply increasing the proportional gain, thus the real
challenge was tuning the PID parameters in order to keep
to curved lanes, in particular the lane of maximal curvature.
In order to do this, we used the Ziegler-Nichols method,
and after a reasonable number of tuning iterations, we were
able to succeed with the following parameters: Kp = 1.50,
Kd = 0.20, and Ki = 0.02.

3.2 Navigation

The challenge of navigating a map becomes exponentially
easier when the map is known. In the real world, vehicles
are typically equipped with GPS, which informs the driver
of the topology of the road network, and localizes one’s own
vehicle within the map at a resolution sufficient enough for

preparing the vehicle for incoming turns and intersections,
but not sufficient enough for localizing other vehicles.

As GPS cannot be used indoors, we provide the vehicle
with map information. We enable the vehicle to navigate
from a specified source to a destination by using the map
information to plan a path. This is input to the navigation
system by specifying the decision (straight, left, right) to be
made at each intersection in the path. A code is given for
each lane segment in the map, which is used by the user to
specify the source location and the desired destination.

3.2.1 Intersections

Fig. 7. An example of a intersection situation in our map

An example of a “intersection” can be seen in Figure 7.
This intersection might look odd, typical intersections on
real-world roads are box-shaped. This wasn’t possible in our
setting as the reason why vehicles can safely turn at such
junctures is due to the fact that real-world roads are multi-
lane. With this, vehicles can safely enter the center in order
to curve into the appropriate left or right lane. In a single-
lane road, turns at box-shaped intersections would require
90° shifts, which is hardly reasonable. Therefore, we gave
each edge a level of curvature, enabling curved trajectories
on a single-lane intersection.

Handling intersections reduces to the navigation sys-
tem’s ability to detect the intersection, and instruct the ve-
hicle with the necessary motor commands needed to safely
lane keep.

An intersection can be detected by simply seeing when
the tracked lane lines break. Furthermore, histograms are
computed on the perspective transform output, enabling
the detection of the curved edges. The source quadrangle
is sized such that the curved edges are present in the birds-
eye view. If the specified direction is “straight”, the desired
trajectory is the vector mean of the directions perpendicular
to the detected turn edges. On the other hand, if the path
planner instructs the vehicle to make a turn, lane keeping
is conducted with the associated curved edge. As the stan-
dardized lane width distance is given to the system, the
desired trajectory is simply the detected edge + a lane width

2
offset. The lane width was set to 6 inches in our map. We



4

found that the PID controller used for standard lane keeping
still worked for this task, meaning a second PID controller
did not have to be tuned for navigation.

3.3 Software

Fig. 8. Multi-threaded Architecture

In order to minimize the latency, we decided to move
away from a sequential pipeline and move towards a multi-
threaded architecture. A simple diagram detailing it can be
seen in Figure 8.

Our multithreaded architecture is the following. We
have a startup script, which instantiates 3 classes:
Lane Detection, Plot, and Control. First, the infinite loop for
lane detection is started in a thread, taking in a continuous
stream of images via the Raspberry Pi camera module and
applying the perception pipeline, outputting the detected
lanes and the cross-track error. The detected lanes are sent
to the Plot class, while the CTE is sent to the Control class,
via pipes. So, after a short delay (to make sure we have at
least one set of detected lanes and a CTE estimate), we then
instantiate the plot and control threads. The control thread
takes the current CTE variable value and converts that into
power to the left and right motors, which is then sent to
the Arduino (via serial connection) to power the motors.
The plot thread gives a continuous view on the intermediate
outputs of the perception pipeline in real-time.

4 RESULTS

Qualitatively, we were able to verify that the vehicle was
successful at navigating the map and was able to keep
within each lane configuration. Please view the demo video
at the following link 1.

For quantitative results, we decided to setup our percep-
tion code on an overhead camera, continuously measuring
the CTE for all lane configurations & turns. As an overhead
camera view should give a better estimate for the CTE than
a front-facing camera, we used its CTE measurements as
the ground truth. We measured the magnitude of the CTE
via the overhead camera for 5 vehicle runs on each lane
configuration, uniformly sampling 50 points on the lane and
averaging the CTE results, then finally averaged the CTE
results across runs. The results are shown in Figure 9.

For reference, we found the distance between the lanes
in pixels from our overhead view at a fixed altitude to be
80. Therefore, a CTE measure of 40 indicates the vehicle
is riding the lane marker. As expected, the lowest CTE

1. https://www.youtube.com/watch?v=SnWBqAnbh2Q

Fig. 9. Quantitative Results

was yielded when keeping to the straight line, but more
interestingly, decreasing θ appears to significantly increase
the difficulty in performing at the lane keeping task.

5 CONCLUSION

Our goal was to design a lane keeping and navigation assist
system which can enable a vehicle to navigate a model of
a real-world street map. In order to experiment, we built
a test vehicle and printed out a map consisting of lane
configurations with varying levels of curvature. Our lane
keeping system was composed of perception and control
modules interacting with the vehicle in a feedback loop.
The following cycle continuously takes place: the front-
facing camera takes an image, the perception module yields
the cross-track error, and the control module yields the
motor commands which would propel the vehicle forward.
The perception module consisted of detecting the edges
in the image, acquiring a “birds-eye view” of the lanes,
detecting the lane lines with a sliding window approach,
and computing the error between the car position and the
midpoint between the lanes. The PID controller was tuned
to minimize that error. For navigation, map information
was provided to the system to allow a path to be planned
between a specified source and destination. Turns were
handled by appropriately lane keeping to the intersection’s
curved edge, which was required due to the single-lane na-
ture of our map. To minimize latency, the described systems
were implemented in a multithreaded software architecture.
Qualitatively, we verified that the vehicle was capable of
navigating the map while staying within the lane lines,
while our quantitative results indicated that increasing the
curvature scales up the difficulty of the lane keeping task
considerably. In future work, we hope to add real-world
complexities to our controlled environment, enabling the
system to navigate under environmental noise and with
dynamic obstacles (other vehicles) present.

Please view the demo video showing our vehicle navi-
gate the 20’ x 10’ map here 1.


	1 Introduction
	2 Experimental Setup
	2.1 Vehicle
	2.2 Lane Configurations
	2.3 Navigation Map

	3 Approach
	3.1 Lane Keeping
	3.1.1 Perception
	3.1.2 Control

	3.2 Navigation
	3.2.1 Intersections

	3.3 Software

	4 Results
	5 Conclusion

